BiRange:An Efficient Framework for Biclustering of Gene Expression Data Using Range Bipartite Graph
نویسندگان
چکیده
Biclustering is a vital data mining tool which is commonly employed on microarray data sets for analysis task in bioinformat ics research and medical applications. There has been extensive research on biclustering of gene expression data arising from microarray experiment. This technique is an important analysis tool in gene expression measurement, when some genes have multip le functions and experimental conditions are diverse. In this paper, we introduce a new framework for biclustering of gene expression data. The basis of this framework is the construction of a range bipartite graph for the representation of 2-dimensional gene expression data. We have constructed this range bipartite graph by partitioning the set of experimental conditions into two disjo int sets. The key benefit of this representation is that, it leads to a compact representation of all similar value ranges between experimental conditions. Based on this problem formulation, an efficient algorithm is proposed that searches for constrained maximal cliques in this range bipartite graph, in order to extract a set of biclusters. Our technique is scalable to pract ical gene expression data and can produce different types of biclusters amid noise. The experimental evaluation of this technique also reveals its accuracy and effectiveness with respect to noise handling and execution time in comparison to other similar techniques.
منابع مشابه
BiFree: An Efficient Biclustering Technique for Gene Expression Data Using Two Layer Free Weighted Bipartite Graph Crossing Minimization
Conventional clustering technique for gene expression data provides a global view of the data. In the biological prospective, a local view is essential for better analysis of gene expression data with simultaneous grouping of genes and conditions. Several biclustering techniques have been proposed in the literature based on different problem formulation. Therefore, it is difficult to compare th...
متن کاملBiCross : A Biclustering Technique for Gene Expression Data using One Layer Fixed Weighted Bipartite Graph Crossing Minimization
Biclustering has become an important data mining technique for microarray gene expression analysis and profiling, as it provides a local view of the hidden relationships in data, unlike a global view provided by conventional clustering techniques. This technique, in contrast to the conventional clustering techniques, helps in identifying a subset of the genes and a subset of the experimental co...
متن کاملcHawk: An Efficient Biclustering Algorithm based on Bipartite Graph Crossing Minimization
Biclustering is a very useful data mining technique for gene expression analysis and profiling. It helps identify patterns where different genes are co-related based on a subset of conditions. Bipartite Spectral partitioning is a powerful technique to achieve biclustering but its computation complexity is prohibitive for applications dealing with large input data. We provide a connection betwee...
متن کاملHigh Performance Parallel/Distributed Biclustering Using Barycenter Heuristic
Biclustering refers to simultaneous clustering of objects and their features. Use of biclustering is gaining momentum in areas such as text mining, gene expression analysis and collaborative filtering. Due to requirements for high performance in large scale data processing applications such as Collaborative filtering in E-commerce systems and large scale genome-wide gene expression analysis in ...
متن کاملBiclustering Using Message Passing
Biclustering is the analog of clustering on a bipartite graph. Existent methods infer biclusters through local search strategies that find one cluster at a time; a common technique is to update the row memberships based on the current column memberships, and vice versa. We propose a biclustering algorithm that maximizes a global objective function using message passing. Our objective function c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012